Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 729307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489918

RESUMO

LytM-domain containing proteins are LAS peptidases (lysostaphin-type enzymes, D-Ala-D-Ala metallopeptidases, and sonic hedgehog) and are known to play diverse roles throughout the bacterial cell cycle through direct or indirect hydrolysis of the bacterial cell wall. A subset of the LytM factors are catalytically inactive but regulate the activity of other cell wall hydrolases and are classically described as cell separation factors NlpD and EnvC. Here, we explore the function of four LytM factors in the alphaproteobacterial plant pathogen Agrobacterium tumefaciens. An LmdC ortholog (Atu1832) and a MepM ortholog (Atu4178) are predicted to be catalytically active. While Atu1832 does not have an obvious function in cell growth or division, Atu4178 is essential for polar growth and likely functions as a space-making endopeptidase that cleaves amide bonds in the peptidoglycan cell wall during elongation. The remaining LytM factors are degenerate EnvC and NlpD orthologs. Absence of these proteins results in striking phenotypes indicative of misregulation of cell division and growth pole establishment. The deletion of an amidase, AmiC, closely phenocopies the deletion of envC suggesting that EnvC might regulate AmiC activity. The NlpD ortholog DipM is unprecedently essential for viability and depletion results in the misregulation of early stages of cell division, contrasting with the canonical view of DipM as a cell separation factor. Finally, we make the surprising observation that absence of AmiC relieves the toxicity induced by dipM overexpression. Together, these results suggest EnvC and DipM may function as regulatory hubs with multiple partners to promote proper cell division and establishment of polarity.

2.
J Bacteriol ; 203(10)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33649146

RESUMO

Lytic enzymes play an essential role in the remodeling of bacterial peptidoglycan (PG), an extracellular mesh-like structure that retains the membrane in the context of high internal osmotic pressure. Peptidoglycan must be unfailingly stable to preserve cell integrity, but must also be dynamically remodeled for the cell to grow, divide, and insert macromolecular machines. The flagellum is one such macromolecular machine that transits the PG, and flagellar insertion is aided by localized activity of a dedicated PG lyase in Gram-negative bacteria. To date, there is no known dedicated lyase in Gram-positive bacteria for the insertion of flagella. Here, we take a reverse-genetic candidate-gene approach and find that cells mutated for the lytic transglycosylase CwlQ exhibit a severe defect in flagellum-dependent swarming motility. We further show that CwlQ is expressed by the motility sigma factor SigD and is secreted by the type III secretion system housed inside the flagellum. Nonetheless, cells with mutations of CwlQ remain proficient for flagellar biosynthesis even when mutated in combination with four other lyases related to motility (LytC, LytD, LytF, and CwlO). The PG lyase (or lyases) essential for flagellar synthesis in B. subtilis, if any, remains unknown.IMPORTANCE Bacteria are surrounded by a wall of peptidoglycan and early work in Bacillus subtilis was the first to suggest that bacteria needed to enzymatically remodel the wall to permit insertion of the flagellum. No PG remodeling enzyme alone or in combination, however, has been found to be essential for flagellar assembly in B. subtilis Here, we take a reverse-genetic candidate-gene approach and find that the PG lytic transglycosylase CwlQ is required for swarming motility. Subsequent characterization determined that while CwlQ was coexpressed with motility genes and is secreted by the flagellar secretion apparatus, it was not required for flagellar synthesis. The PG lyase needed for flagellar assembly in B. subtilis remains unknown.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/fisiologia , Flagelos/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Movimento , Mutação , Peptidoglicano Glicosiltransferase/genética , Fator sigma/metabolismo , Sistemas de Secreção Tipo III/metabolismo
3.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33106347

RESUMO

The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute Bacillus subtilis encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity.IMPORTANCE CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Alelos , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mutação com Perda de Função/genética , Conformação Proteica , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Proteínas Repressoras/genética
4.
Curr Biol ; 30(6): 1011-1022.e6, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32059765

RESUMO

The presence or absence of oxygen in the environment is a strong effector of cellular metabolism and physiology. Like many eukaryotes and some bacteria, Bacillus subtilis primarily utilizes oxygen during respiration to generate ATP. Despite the importance of oxygen for B. subtilis survival, we know little about how populations adapt to shifts in oxygen availability. Here, we find that when oxygen was depleted from stationary phase B. subtilis cultures, ∼90% of cells died while the remaining cells maintained colony-forming ability. We discover that production of the antimicrobial surfactin confers two oxygen-related fitness benefits: it increases aerobic growth yield by increasing oxygen diffusion, and it maintains viability during oxygen depletion by depolarizing the membrane. Strains unable to produce surfactin exhibited an ∼50-fold reduction in viability after oxygen depletion. Surfactin treatment of these cells led to membrane depolarization and reduced ATP production. Chemical and genetic perturbations that alter oxygen consumption or redox state support a model in which surfactin-mediated membrane depolarization maintains viability through slower oxygen consumption and/or a shift to a more reduced metabolic profile. These findings highlight the importance of membrane potential in regulating cell physiology and growth, and demonstrate that antimicrobials that depolarize cell membranes can benefit cells when the terminal electron acceptor in respiration is limiting. This foundational knowledge has deep implications for environmental microbiology, clinical anti-bacterial therapy, and industrial biotechnology.


Assuntos
Bacillus subtilis/fisiologia , Membrana Celular/fisiologia , Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...